New Robust Design Guideline for Imperfection Sensitive Composite Launcher Structures

نویسندگان

  • R. Degenhardt
  • R. Zimmermann
  • A. Kling
  • D. Wilckens
چکیده

The Space industry demand for lighter and cheaper launcher transport systems. The upcoming EU project DESICOS (New Robust DESIgn Guideline for Imperfection Sensitive COmposite Launcher Structures), which will start in 2012, contributes to these aims by a new design procedure for imperfection sensitive composite launcher structures, exploiting the worst imperfection approach efficiently by implementation of the Single Perturbation Load Approach [1]. Currently, imperfection sensitive shell structures prone to buckling are commonly designed according the NASA SP 8007 guideline using the conservative lower bound curve. The guideline dates from 1968, and the structural behaviour of composite material is not considered appropriately, in particular since buckling load and imperfection sensitivity of shells made from such materials substantially depend on the lay-up design. This is not considered in the NASA SP 8007, which allows designing only so called "black metal" structures. Here is a high need for a new precise and efficient design approach for imperfection sensitive composite structures which allows significant reduction of structural weight and design cost. For most relevant architectures of cylindrical and conical launcher structures (monolithic, sandwich without and with holes) DESICOS will investigate a combined methodology from the Single Perturbation Load Approach and a Specific Stochastic Approach which guarantees an effective and robust design. A recent investigation demonstrated, that an axially loaded unstiffened cylinder, which is disturbed by a large enough single perturbation load, is leading directly to the design buckling load 45% higher compared with the respective NASA SP 8007 design [2]. Within DESICOS the new methods will be further developed, validated by tests and summarized in a handbook for the design of imperfection sensitive composite structures. The potential will be demonstrated within different industrially driven use cases. This presentation deals with the objectives of the DESICOS project, describes the line of actions of the new approach, and specifies the theoretical and experimental work to be carried out in order to meet the objectives.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of Imperfections on Axial Buckling Load of Composite Cylindrical Shells

There is a strong requirement for more robust, lighter and cheaper launch vehicle structures. Unstiffened composite cylindrical shells, which are essential to the fabrication of launch vehicle airframes, are prone to buckling and are highly sensitive to imperfections which arise during the manufacturing process. The buckling load is an important characteristic in design, and may vary drasticall...

متن کامل

A new robust design for imperfection sensitive stiffened cylinders used in aerospace engineering

A knock-down factor is commonly used to take into account the obvious decline of the buckling load in a cylindrical shell caused by the inevitable imperfections. In 1968, NASA guideline SP-8007 gave knock-down factors which rely on a lower-bound curve taken from experimental data. Recent research has indicated that the NASA knock-down factors are inclined to produce very conservative estimation...

متن کامل

Higher-Order Stability Analysis of Imperfect Laminated Piezo-Composite Plates on Elastic Foundations Under Electro-Thermo-Mechanical Loads

This article provides a fully analytical approach for nonlinear equilibrium path of rectangular sandwich plates. The core of structure is made of symmetric cross-ply laminated composite and the outer surfaces are piezoelectric actuators which perfectly bonded to inner core. The structure is subjected to electro-thermo-mechanical loads simultaneously. One side of plate is rested on Pasternak typ...

متن کامل

Local Imperfection Effects on Thermal Buckling Behavior of Composite Fiber Reinforced Truncated Conical Liner

Thermal buckling behavior of truncated conical liner reinforced by laminated composite is investigated in the presence of a general initial imperfection. For this purpose, the method of virtual work and first-order strain-deformation shell theory are employed to extract equilibrium equations. To this end, a finite element code is developed using the 3D 8-node shell element with six degrees of f...

متن کامل

Preferred Robust Response Surface Design with Missing Observations Based on Integrated TOPSIS-AHP Method

- Missing observations occur in experimental designs as a result of insufficient sampling, machine breakdown, high cost, and errors in the measurements. In nanomanufacturing, missing observations often appear in designs because the combination of factors or molecular structures selected by a designer cannot be experimented successfully. In the current paper, Box-Behnken and face-centered compos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011